

Course Syllabus: MAT 312 – Modern Geometric Theories

Spring Semester 2011

Instructor: Ulrich Hoensch, Ph.D.

• E-mail: hoenschu@rocky.edu

• Office: Morledge/Kimball 118

• Office Phone: (406)-657-1126

• Office Hours:

- Monday 9:45 a.m.-10:45 a.m.

- Tuesday 1:30 p.m.-2:30 p.m.

- Wednesday 9:45 a.m.-10:45 a.m.

- Thursday 1:30 p.m.-2:30 p.m.

- Friday 9:45 a.m.-10:45 a.m.

and other times by appointment.

Class Information

• Credits: 3 semester hours

• Class Meetings: Monday, Wednesday, Friday 8:45 a.m. - 9:35 a.m.

• Room: Bair Science 102

• Class Web Page: www.rocky.edu/~hoenschu/SS_2011/MAT312/main.html

Text Greenberg, Euclidean and Non-Euclidean Geometries-Development and History, Fourth Edition, Freeman (required). Students are also encouraged to read Doxiadis/Papadimitriou, Logicomix: An Epic Search for Truth, Bloomsbury, as a companion text.

Course Description This course provides a study of Euclidean and non- Euclidean geometries. Prerequisites: MAT175 and MAT 212.

Rationale MAT 312 is a required course for students pursuing a major or minor in mathematics education (the course provides content knowledge in mathematics, as indicated in the RMC Teacher Education Program Conceptual Framework). It is a recommended course for students pursuing a major or minor in mathematics.

Course Objectives At the completion of MAT 312, students will be able to:

(1) Trace the development of plane geometry from Euclid to Hilbert.

- (2) Use elementary logic in mathematical proofs and apply the rules and syntax of symbolic logic.
- (3) Establish geometric results in incidence geometry using the axiomatic method.
- (4) Correctly use and communicate the concepts underlying models, consistency and isomorphisms.
- (5) Apply the axioms of betweenness, congruence, and continuity.
- (6) Establish and apply results in neutral geometry.
- (7) Use and prove results for Non-Euclidean geometries.
- (8) Work with major models in Non-Euclidean geometry.
- (9) Independently read the textbook and apply the knowledge thus acquired.

Methods of Evaluation Students will be evaluated based on the following evidence.

- Homework assignments and reading quizzes.
- Attendance record, timeliness, the amount of courtesy and respect extended towards fellow students and the instructor.
- Level of academic and personal honesty and integrity.

Criteria for Grade Assignment To receive a passing grade, a student must show evidence that she/he is able to successfully perform the tasks laid out as course objectives (see above). Furthermore, students must attend all class meetings, arrive on time and exhibit appropriate classroom and social behavior. All submitted work must be the student's own work, or if it is not, names of sources or collaborators must be identified.

Possible points will come from:

- Reading assignments which are worth 100 points. Students must read the assigned sections of the textbook prior to each class meeting (see the course schedule below). A take-home quiz covering each reading assignment is due at the beginning of each class meeting.
- Homework assignments which are worth 400 points.

This amounts to a total of 500 possible points. The following grading scale will be used to assign grades. Note that no "D" grades are given.

A: 90%, or more B: 80% - 89% C: 70%-79% F: less than 70% of possible points.

Instructional Methods and Experiences The format of this class is that of a small-class lecture. Student participation in the lecture is encouraged. Study groups outside of class are strongly recommended. However, completion of homework assignments must be done independently by each student.

Class Policies Students are required to attend all class meetings and complete all assignments. All homework assignments must be submitted at the beginning of class on the due date. Late homework will not be corrected and will receive no credit, regardless of circumstances or personal emergencies. Other in-class assignments, including tests and exams, must be completed in the time allotted by the instructor. All work on tests and exams must be the student's own work, and

may only be obtained through the use of allowed tools. Homework assignments must be completed independently by each student. Tests and exams may only be made up if the instructor is notified in advance of qualified absences. Qualified absences are limited to the following: (a) activities connected with Rocky Mountain College programs; (b) grave illness (in which case a doctor's note is required); (c) a family or personal emergency, or due to force majeure. In case (a), students must inform the instructor prior to their absence. In cases (b) and (c) above, students may be excused from assignments if they notify the instructor immediately after their absence.

College Academic Policies Students must abide by all Academic Integrity Policies of the College. See http://www.rocky.edu/index.php?type=academics&ct=policies for details.

Date	Reading	Topics
Mon Jan 10	p.1-15	Axiomatic Method/Undefined Terms
Wed Jan 12	p.15-23	Euclid's First Four Postulates
Fri Jan 14	p.23-40	Straightedge-and-Compass Constructions
Wed Jan 19	p.53-68	Elementary Logic and Proofs
Fri Jan 21	p.69-71	Elementary Logic and Proofs
Mon Jan 24	p.72-79	Incidence Geometry
Wed Jan 26	p.79-82	Models
Fri Jan 28	p.82-83	Isomorphism of Models
Mon Jan 31	p.84-86	Affine and Projective Planes
Wed Feb 02	p.87-91	Affine and Projective Planes
Fri Feb 04	p.103-111	Affine and Projective Planes
Mon Feb 07	p.111-115	Axioms of Betweenness
Wed Feb 09	p.116-119	Axioms of Betweenness
Fri Feb 11	p.119-122	Axioms of Betweenness
Mon Feb 14	p.122-126	Axioms of Congruence
Wed Feb 16	p.126-129	Axioms of Congruence
Fri Feb 18	p.129-132	Axioms of Congruence
Mon Feb 21	p.132-135	Axioms of Continuity
Wed Feb 23	p.135-138	Axioms of Continuity
Fri Feb 25	p.138-144	Axioms of Continuity
Mon Mar 07	p.161-164	Hilbert's Euclidean Axioms of Parallelism
Wed Mar 09	p.164-168	Alternate Interior Angle Theorem
Fri Mar 11	p.169-173	Exterior Angle Theorem
Mon Mar 14	p.173-176	Measure of Angles and Segments
Wed Mar 16	p.176-183	Equivalence of Euclidean Parallel Postulates
Fri Mar 18	p.183-191	Saccheri and Lambert Quadrilaterals
Mon Mar 21	p.209-219	Angle Sum of a Triangle
Wed Mar 23	p.219-227	History of the Parallel Postulate
Fri Mar 25	p.239-249	History of the Parallel Postulate
Mon Mar 28	p.249-254	Discovery of Non-Euclidean Geometry
Wed Mar 30	p.254-260	Non-Euclidean Hilbert Planes
Fri Apr 01	p.260-267	Non-Euclidean Hilbert Planes
Mon Apr 04	p.289-293	Non-Euclidean Hilbert Planes
Wed Apr 06	p.293-301	Consistency of Hyperbolic Geometry
Fri Apr 08	p.302-308	The Beltrami-Klein Model
Mon Apr 11	p.308-311	The Poincaré Models
Wed Apr 13	p.311-313	Perpendicularity in the Beltrami-Klein Model
Fri Apr 15	p.313-322	A Model of a Hyperbolic Plane from Physics
Mon Apr 18	p.322-333	Inversion in Circles, Poincaré Congruence
Wed Apr 20	p.333-341	Inversion in Circles, Poincaré Congruence
Wed Apr 27	p.341-348	The Projective Nature of the Beltrami-Klein Model
Fri Apr 29		The Projective Nature of the Beltrami-Klein Model

OPI/PEPPS Standards

Standard	Course Objective
10.58.518 Mathematics	
(1) The program requires that successful	
candidates:	
(3) demonstrate content knowledge in:	
(c) geometries by using spatial visualiza-	(3), (4), (6), (7), (8)
tion and geometric modeling to explore	
and analyze geometric shapes, structures,	
and their properties;	
(g) measurement by applying and using	(4), (5), (6)
measurement concepts and tools.	